05. References

Books

Alvarez, R. M. (Ed.). (2016). Computational social science. Cambridge University Press.

Nelimarkka, M. (2022). Computational thinking and social science: Combining programming, methodologies and fundamental concepts. Sage Publications.

Engel, U., Quan-Haase, A., Liu, S., & Lyberg, L. (Eds.). (2021). Handbook of Computational Social Science, Volume 2: Data Science, Statistical Modelling, and Machine Learning Methods. Taylor & Francis.

Welker, M., Stützer, C. M., & Egger, M. (Eds.). (2018). Computational social science in the age of big data: concepts, methodologies, tools, and applications. Herbert von Halem Verlag.

Articles

Bravo, G., Farjam, M. (2017) Prospects and challenges for the computational social sciences. Journal of universal computer science (Online), 23(11): 1057-1069.

Cabanas-Tirapu, O., Danús, L., Moro, E., Sales-Pardo, M., & Guimerà, R. (2025). Human mobility is well described by closed-form gravity-like models learned automatically from dataNature Communications16(1), 1336.

Collins, A., Koehler, M., & Lynch, C. (2024). Methods that support the validation of agent-based models: An overview and discussionJournal of Artificial Societies and Social Simulation27(1). (Webinar here – YouTube)

Folgado, M. G., & Sanz, V. (2022). Exploring the political pulse of a country using data science toolsJournal of Computational Social Science5(1), 987-1000.

Gleditsch, K. S., & Weidmann, N. B. (2012). Richardson in the information age: Geographic information systems and spatial data in international studies. Annual Review of Political Science, 15(1), 461-481.

Shi, F., & Evans, J. (2023). Surprising combinations of research contents and contexts are related to impact and emerge with scientific outsiders from distant disciplinesNature Communications14(1), 1641.

Stier, A. J., Sajjadi, S., Karimi, F., Bettencourt, L. M., & Berman, M. G. (2024). Implicit racial biases are lower in more populous more diverse and less segregated US cities. Nature Communications15(1), 961.

Ueshima, A., Jones, M. I., & Christakis, N. A. (2024). Simple autonomous agents can enhance creative semantic discovery by human groupsNature Communications15(1), 5212.

van den Berg, P., Vu, T., & Molleman, L. (2024). Unpredictable benefits of social information can lead to the evolution of individual differences in social learningNature Communications15(1), 5138.